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Fast and Robust Attribute Reduction Based on the
Separability in Fuzzy Decision Systems

Meng Hu, Eric C. C. Tsang , Yanting Guo, and Weihua Xu

Abstract—Attribute reduction is one of the most important pre-
processing steps in machine learning and data mining. As a key
step of attribute reduction, attribute evaluation directly affects
classification performance, search time, and stopping criterion.
The existing evaluation functions are greatly dependent on the
relationship between objects, which makes its computational time
and space more costly. To solve this problem, we propose a novel
separability-based evaluation function and reduction method by
using the relationship between objects and decision categories
directly. The degree of aggregation (DA) of intraclass objects and
the degree of dispersion (DD) of between-class objects are first
defined to measure the significance of an attribute subset. Then,
the separability of attribute subsets is defined by DA and DD
in fuzzy decision systems, and we design a sequentially forward
selection based on the separability (SFSS) algorithm to select
attributes. Furthermore, a postpruning strategy is introduced
to prevent overfitting and determine a termination parame-
ter. Finally, the SFSS algorithm is compared with some typical
reduction algorithms using some public datasets from UCI and
ELVIRA Biomedical repositories. The interpretability of SFSS is
directly presented by the performance on MNIST handwritten
digits. The experimental comparisons show that SFSS is fast and
robust, which has higher classification accuracy and compression
ratio, with extremely low computational time.

Index Terms—Attribute reduction, fuzzy decision systems,
fuzzy membership, separability.

I. INTRODUCTION

ATTRIBUTE reduction aims to reduce irrelevant, redun-
dant, and inconsistent attributes from the original

attribute set so as to better mine the potential rules between
knowledge and tasks, and help decision making and prediction.
It has been widely used in machine learning, data mining, and
pattern recognition. An outstanding technology of attribute
selection cannot only reduce the cost of classification and
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regression tasks but also improve the performance of the tasks
and reduce storage space [2], [14].

In practical applications, many data with high dimen-
sions and high noise are fuzzy and uncertain. Many attribute
reduction methods in fuzzy data were proposed, such as
fuzzy rough sets (FRSs) [10], [16], [24], [25]; kernel
machine learning [5], [10], [25]; information entropy [3], [6];
and neighborhood relation [1]–[4], [6]. Fuzzy sets were
first proposed by Zadeh in 1965 [13], which have been
applied to neural networks [18], [19]; support vector
machines [20], [21]; logic controllers [23]; ensemble learn-
ing [35], [36]; and attribute selection [16], [22]. By com-
bining the fineness of the boundary description of fuzzy
sets with the objectivity of knowledge expression of rough
sets [15], [37], [38], FRSs describe the certain and possible
membership degrees of objects with respect to categories by
two approximate operators.

Dubois and Prade [26], [27] first introduced the fuzzy sets
into the upper and lower approximations of rough sets to
propose FRS. Wu et al. [28] extended the fuzzy equiva-
lence relation to the general binary fuzzy relation and formed
more generalized FRSs. Some researchers further studied
attribute reduction based on the FRS [16], [22], [24], [25].
Hu et al. [10] proposed two types of kernelized FRS by
integrating kernel functions with FRSs. Chen et al. [25] com-
bined the Gaussian kernel function with FRSs to propose
parameterized attribute reduction. In [5], the fuzzy kernel
assignment of the combined kernel and the ideal kernel was
minimized, and then the attribute with high assignment value
was selected, whereas it would be eliminated. To calculate the
distinguishing ability of similarity relations, Yager [31] pro-
vided an extension of the Shannon entropy based on the fuzzy
similarity relation to measure the significance of attribute
subsets. Hernĺćndez and Recasens [32] presented the joint
entropy and conditional entropy based on the Yager entropy
to learn fuzzy decision trees. The entropy-based attribute
reduction has been widely used in gene data expression and
medical diagnosis [29], [30], [46]. The attribute reduction of
joint mutual information and FRS was studied in litera-
ture [29], which has been applied in cancer classification.
In 2011, Hu et al. [3] constructed a neighborhood mutual
information measure by combining the Shannon information
entropy with the neighborhood relation, then used it to evaluate
the significance of continuous and discrete features. In 2016,
Wang et al. [33] established a fuzzy neighborhood rough set
model and defined the dependency between fuzzy decision and
conditional attributes to measure the significance of attributes
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and reduce unnecessary attributes. In 2018, the neighborhood
discernibility measure [34] was defined by considering consis-
tent samples and discriminate samples with different decisions,
which were used to characterize the classification ability of
attribute subsets. Neighborhood mutual information [1] was
defined by using the cardinality of neighborhood relation to
measure the importance of a candidate attribute subset.

The evaluation functions of the above reduction methods
all consider the fuzzy relation of objects. The FRS-based
attribute reduction [17] was mainly to find a minimal attribute
subset to keep the fuzzy positive region or the dependency
degree unchanged. It needs to calculate the fuzzy equivalence
or similarity classes, and calculate the lower approximation
and dependency by using the inclusion relation between fuzzy
classes and decision classes. The calculation of fuzzy classes
is very time consuming, which is positively related to the num-
ber of attributes and the square of the number of objects. The
kernel-based attribute reduction [5], [10], [42] was to map
the low-dimensional inseparable data to the high-dimensional
separable space, then select attributes. In the mapping process
by using kernel functions, it consumes a lot of time to calcu-
late the similarity between objects. The entropy-based attribute
reduction [39]–[41] was to select a minimal attribute subset
with the least uncertainty described by different entropies. It
also needs to calculate equivalence or similarity classes. The
neighborhood-based attribute reduction [3], [33], [34] con-
sumes a lot of time to find a proper neighborhood parameter
and calculate fuzzy classes.

An efficient and reasonable attribute evaluation function
is helpful to improve classification performance and reduce
search time. In this article, we establish the attribute evalua-
tion function by directly considering the relationship between
objects and decision categories, which avoid the cost of cal-
culating the relationship between objects. In the first step, we
define the fuzzy membership between objects and decision
classes by minimizing the objective function (1), and compute
the degree of aggregation (DA) of intraclass objects by the
defined fuzzy membership. The degree of dispersion (DD) of
between-class objects is defined by intraclass centers. In the
second step, we define the separability of attribute subsets in
fuzzy decision systems by combining DA and DD, in which
the separability is used to characterize the classification ability
of an attribute subset. In the last step, we design a heuristic
algorithm to select attributes. Finally, we use the UCI [7],
ELVIRA Biomedical [44], and handwritten digit datasets to
verify the stability and effectiveness of the proposed algorithm
by comparing it with some representative algorithms. From
the distance-based evaluation index perspective, we choose the
classic ReliefF-based attribute selection algorithm (RELIEF-
F) [11], and the state-of-the art algorithms based on the
neighborhood relation between objects, namely, the neigh-
borhood discrimination index-based algorithm (HANDI) [1]
and neighborhood mutual information-based feature selection
algorithm (NMI) [3]. From the redundancy between features
and the relevance between features and targets perspective,
we choose the state-of-the art algorithm based on mutual
information, namely, minimal-redundancy-maximal-relevance
(mRMR) [45]. RELIEF-F updates the weights of attributes by

using the difference between a sample and k nearest neigh-
bors from the same class and the difference between the
sample and k nearest neighbors from each of the different
classes. The weights are updated repeatedly to evaluate the
quality of attributes. HANDI describes the significance of
attributes based on the distinguishing ability of the neigh-
borhood similarity relation. NMI evaluates the significance
of attribute subsets by joint neighborhood entropy between
attributes and joint neighborhood entropy between attributes
and decisions. mRMR selects feature subsets by minimizing
the redundancy between features and maximizing the rele-
vance between features and targets simultaneously. From the
perspective of classification, the purpose of this article is
to find an attribute subset that makes the intraclass objects
compact and the between-class objects sparse. The experimen-
tal results show that the proposed algorithm has outstanding
advantages in computational efficiency, classification accuracy,
and the size of selected attributes.

This article is organized as follows. In Section II, we
review some basic concepts of linear discriminant analysis
(LDA) and analyze our research motivation. Then, the mea-
sures of DA and DD are defined to evaluate the significance
of attribute subsets in Section III. In Section IV, a sequentially
forward selection based on the separability (SFSS) algorithm is
proposed to select attribute subsets. In Section V, we use pub-
lic datasets to verify the feasibility, efficiency, and stability of
SFSS. Finally, our conclusions and future work are elaborated
in Section VI.

II. RELATED WORK AND MOTIVATION

As we study attribute reduction in fuzzy decision systems,
it is necessary to review the basic concepts of LDA [43]
and fuzzy decision systems [13]. Then, we will introduce
motivation for attribute reduction.

A. Linear Discriminant Analysis

Let U = [x1, x2, . . . , xn] ∈ Rm×n be a training set with n
samples. There are K categories, nk is the number of samples
of the kth category, xi

k ∈ Rm denotes the ith sample of the kth
category. The aim of LDA is to find a projection vector, which
can reduce the distance of samples from the same category and
increase the distance of samples from different categories. The
projection vector is obtained by using the following Fisher
criterion:

v∗ = arg max
v

vTSbv

vTSwv

where Sb and Sw are the between-class and intraclass scatter
matrices, respectively. They are calculated as follows:

Sb = 1

n

K∑

k=1

nk(ck − c)(ck − c)T

Sw = 1

n

K∑

k=1

nk∑

i=1

(
xi

k − ck
)(

xi
k − ck

)T

where ck = [1/nk]
∑nk

i=1 xi
k and c = (1/n)

∑K
k=1

∑nk
i=1 xi

k. The
solution of the above projection vector can be transformed into
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TABLE I
FUZZY DECISION SYSTEM

the following optimization problem:

v∗ = arg max
vT v=1

vT(Sw − λSb)v

where λ is a small positive constant. So we know that the
optimal projection vector v is the eigenvector corresponding
to the minimum eigenvalue of Swv = λSbv.

LDA can map the data from high-dimensional space to low-
dimensional space using linear transformation, which aims
to improve the data separability. The attributes obtained by
LDA transformation are not the children attributes of the
original attributes, but are the mapping attributes in the new
low-dimensional space. However, in many practical applica-
tions, we need to remove some redundant attributes from the
original attributes without changing the meaning of attributes
themselves.

B. Motivation

LDA uses the category information to find a projection that
minimizes the distance of samples with the same category and
maximizes the distance of samples from different categories so
as to improve the classification accuracy. Inspired by this idea,
we define two measures DA and DD, from the perspective
of the intraclass compactness and the between-class sparsity,
to select attributes without changing the original meaning of
attributes.

We first introduce the basic concept of a fuzzy decision
system. Let FDS = (U, A, V, f ) be a fuzzy decision system,
where U = {x1, x2, . . . , xn} is the universe of discourse,
A = C ∪ D is the union of the conditional attribute set
C = {a1, a2, . . . , am} and the decision attribute set D =
{d1, d2, . . . , ds}, and C ∩D = ∅; V = ∪a∈AVa is the attribute
value domain. f : U × A → V is a mapping, that is ∀x ∈ U
and ∀a ∈ A, we have f (x, a) ∈ Va, where f (x, a) represents the
value of object x under the attribute a and 0 ≤ f (x, a) ≤ 1.
R is an equivalence relation which is formed by the condi-
tional attribute C in the universe U. [x]R is an equivalence
class of object x induced by the equivalence relation R, where
[x]R = {y ∈ U|f (x, a) = f (y, a) ∀a ∈ C}. U/C denotes
the conditional partition of universe U under the conditional
attribute C and U/D denotes the decision partition of universe
U under the decision attribute D.

Example 1: A given fuzzy decision system is shown in
Table I, where U = {x1, x2, . . . , x18}, C = {a1, a2, a3}, and
D = {d}. These objects are divided into three mutually

Fig. 1. Distributions of objects under different attribute subsets.
(a) {a1,a2,a3}. (b) {a1,a2}. (c) {a1,a3}. (d) {a2,a3}.

Fig. 2. Classification results of KNN under different attribute subsets.
(a) {a1,a2,a3}. (b) {a1,a2}. (c) {a1,a3}. (d) {a2,a3}.

exclusive classes by the decision attribute d. We show the
distribution information of objects under different attribute
subsets, as shown in Fig. 1. The red circles, green squares, and
blue hexagonal stars represent classes with decision attribute
values of 1, 2, and 3, respectively. Fig. 1(a) shows the distribu-
tion of objects under the attribute set {a1, a2, a3}. Fig. 1(b)–(d)
shows the distributions of objects under attribute subsets
{a1, a2}, {a1, a3}, and {a2, a3}, respectively. Different attribute
subsets have different distinguishing ability for objects. From
Fig. 1, the separability of objects under the attribute subset
{a1, a2} is better than those of {a1, a3} and {a2, a3}.

Next, we use two classifiers to classify objects under dif-
ferent attribute sets. Figs. 2 and 3 are the classification results
using KNN (k = 2) and RBF-SVM (C = 1 and σ = 1)
classifiers, respectively. Obviously, the classification ability of
KNN and RBF-SVM under the attribute subset {a1, a2} is bet-
ter than those of other attribute subsets. From Figs. 2 and 3,
we can see that when the intraclass objects are closer and
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Fig. 3. Classification results of RBF-SVM under different attribute subsets.
(a) {a1,a2,a3}. (b) {a1,a2}. (c) {a1,a3}. (d) {a2,a3}.

the between-class objects are more scattered, the classification
results are better, and the overfitting can also be prevented.
From the above example, we find that the closer the intr-
aclass objects are and the more scattered the between-class
objects are, the more conducive to classification. Thus, it is
meaningful to select an attribute subset that is conducive to
classification by studying the separability of attributes with
respect to categories.

The purposes of attribute reduction for classification task,
regression task and keeping the positive region of rough sets
unchanged are different.

1) The purpose of attribute reduction of the classification
task is to find a minimal attribute subset which can make
the similarity of objects from same category higher and
that of objects from different categories lower.

2) The purpose of attribute reduction of the regression task
is to find a minimal attribute subset, so that when the
similarity of objects under this attribute subset is high, the
similarity of objects under decision attributes is also high.

3) The purpose of attribute reduction of keeping the posi-
tive region of rough set unchanged is to find a minimal
attribute subset which can make the attribute information
granule consistent or basically consistent with the deci-
sion information granule. In this article, we will reduce
redundant and inconsistent attributes of the classification
task based on the separability.

The main innovations of this article are as follows.
1) Considering that the distances, between objects and class

centers, are negatively related to the fuzzy member-
ship of the objects about the classes, we use fuzzy
membership to describe the DA of intraclass objects.

2) The distances between class centers are used to measure
the DD of between-class objects.

3) Based on the DA and the DD, we propose a separability
measure to evaluate the significance of attribute subsets.

4) Directly considering the relation between objects and
decision classes can greatly reduce the calculation time
and improve the efficiency of reduction.

TABLE II
DESCRIPTION OF NOTATIONS

Fig. 4. Distribution of objects under attribute subset {a1, a2}.

5) Based on the separability measure and postpruning
strategy, we design a sequentially forward selection
algorithm for attribute reduction.

C. Notations

To facilitate reading and understanding, we first explain
the notations to prepare for the following work. Detailed
information is shown in Table II.

III. MEASURES OF INTRACLASS COMPACTNESS AND

BETWEEN-CLASS SPARSITY

In this section, we will first define the DA of intraclass
objects by fuzzy membership and the DD of between-class
objects by distance in the fuzzy decision system. Then, the
rationality of the definition is discussed.

Let FDS = (U, A, V, f ) be a fuzzy decision system, where
U/D = {D1, D2, . . . , DK} and Dk(k = 1, 2, . . . , K) is the
kth decision class. CP = {C1, C2, . . . , CK} is a set of the
center of each class under the attribute subset B, where
Ck = (ck(a1), ck(a2), . . . , ck(a|B|)), (k = 1, 2, . . . , K, ai ∈ B),
and ck(ai) is mean or median of all objects of the kth decision
class under the attribute ai. Fig. 4 shows the distribution of
objects in Example 1 under attribute subset {a1, a2}, where C1,
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C2, and C3 are the mean centers of red circles, green squares,
and blue hexagonal stars objects, respectively.

Let μB(xi, Dk) be the membership of object xi with respect
to the decision class Dk under attribute subset B, abbreviated
as μik. Let dB(xi, Dk) be the distance of object xi with respect
to Dk under B. In order to describe the relationship between
the fuzzy membership μB(xi, Dk) and the distance dB(xi, Dk),
we introduce the objective function

J =
K∑

k=1

n∑

i=1

μm
ikd2

B(xi, Dk) (1)

where 0 ≤ μik ≤ 1(i = 1, 2, . . . , n and k = 1, 2, . . . , K),∑K
k=1 μik = 1(i = 1, 2, . . . , n), m(m > 1) is a weighting

exponent. When the objective function J obtains the mini-
mum value, μik has a negative correlation with dB(xi, Dk). The
smaller the distance is, the greater the membership is. dB can
take the Minkowski, Mahalanobis, cosine, and Hamming dis-
tances and so on. This article mainly introduces the Minkowski
distance. The calculation method of dB(xi, Dk) is

dB(xi, Dk) = p

√∑

a∈B

|f (xi, a)− ck(a)|p (2)

where p can be any real number greater than or equal to 1.
dB(xi, Dk) is called the Manhattan distance if p = 1, the
Euclidean distance if p = 2, and the Chebychev distance if
p = ∞.

The objective function J is a constrained optimization
problem. We use the Lagrange multiplier method to trans-
form it into an unconstrained optimization problem. The
unconstrained objective function is as follows:

F =
K∑

k=1

n∑

i=1

μm
ikd2

B(xi, Dk)+
n∑

i=1

λi

(
K∑

k=1

μik − 1

)
(3)

where λi for i = 1, 2, . . . , n are Lagrange multipliers. The
minimum value of (3) is required to find the stationary point
of the function. Therefore, we calculate the partial derivatives
of F with respect to μik and λi, namely

∂F

∂μik
= mμm−1

ik d2
B(xi, Dk)+ λi (4)

∂F

∂λi
=

K∑

k=1

μik − 1. (5)

Let [(∂F)/(∂μik)] = 0 and [(∂F)/(∂λi)] = 0, μik is obtained
as follows:

μik =
(

−λi

md2
B(xi, Dk)

) 1
m−1

=
(−λi

m

) 1
m−1
(

1

dB(xi, Dk)
2

m−1

)
. (6)

Based on (5) and (6), we can be further concluded

1 =
K∑

k=1

μik =
K∑

k=1

(−λi

m

) 1
m−1
(

1

dB(xi, Dk)
2

m−1

)

=
(−λi

m

) 1
m−1

K∑

k=1

1

dB(xi, Dk)
2

m−1

. (7)

(−λi/m)(1/[m−1]) can be solved from (7), and bringing it into
(6), we can obtain

μik =
⎛

⎜⎝
1

∑K
j=1

1

dB(xi,Dj)
2

m−1

⎞

⎟⎠

(
1

dB(xi, Dk)
2

m−1

)

= 1

∑K
j=1

dB(xi,Dk)
2

m−1

dB(xi,Dj)
2

m−1

= 1

∑K
j=1

(
dB(xi,Dk)

dB(xi,Dj)

) 2
m−1

. (8)

From (8), we know that when m is equal to 2 or 3, the value
of (2/[m− 1]) is an integer and the solution of μik is also
related to dB. If p = 1 in dB and m = 3, we can reduce the
square operation in μik solving process. If p = 2 in dB and
m = 2, we can reduce the square root and square operation
in μik solving process. If p in dB is equal to other values, we
can obtain m = (2/p)+ 1 to reduce the exponential operation
in μik solving process. We choose Euclidean distance in this
article, so m is set to 2 to improve computational efficiency.

A new measure, called the DA of intraclass objects, is
proposed to measure the closeness of intraclass objects by
memberships of objects with respect to decision classes.

Definition 1: Let FDS = (U, A, V, f ) be a fuzzy decision
system, Dk ∈ U/D and the attribute subset B ⊆ C, the DA of
the decision class Dk under B is defined as

DAB(Dk) =
∑

xi∈Dk
μB(xi, Dk)

|Dk| =
∑

xi∈Dk
μik

|Dk| . (9)

Because the membership has a negative correlation with the
distance, the larger DAB is, the closer the intraclass objects
are, under the attribute subset B.

Property 1: Let B ⊆ C and Dk ∈ U/D, then 0 ≤
DAB(Dk) ≤ 1.

Proof: 0 ≤ μik ≤ 1, we can obtain 0 ≤∑xi∈Dk
μik ≤ |Dk|.

Thus, 0 ≤ DAB(Dk) ≤ 1.
Definition 2: Let FDS = (U, A, V, f ) be a fuzzy decision

system, U/D = {D1, D2, . . . , DK}, B ⊆ C, the DA of the
fuzzy decision system under B is defined as

GDAB(S) =
∑

Dk∈U/D DAB(Dk)

|U/D| (10)

where S denotes the fuzzy decision system. GDAB(S) is a
measure of the intraclass compactness of all decision classes
under B in the FDS.

Property 2: Let B ⊆ C and U/D = {D1, D2, . . . , DK}, then
0 ≤ GDAB(S) ≤ 1.

Proof: According to Property 1, 0 ≤ DAB(Dk) ≤ 1,
we can obtain 0 ≤ ∑

Dk∈U/D DAB(Dk) ≤ |U/D|. Thus,
0 ≤ GDAB(S) ≤ 1.

In addition to the compactness of the intraclass objects that
can measure the separability of the system, the sparsity of the
between-class objects is also an important index to measure the
separability of the system. We will define the DD of between-
class objects based on intraclass centers.

Let C be the center of all class centers under B,
where C = (c(a1), c(a2), . . . , c(a|B|)), (ai ∈ B), c(ai) =
(1/K)

∑K
i=1 ck(ai). dB(C, Ck) = 2

√∑
ai∈B |c(ai)− ck(ai)|2
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denotes the distance from C to Ck under B. C is the cen-
ter of C1, C2, and C3 in Fig. 4. We will define the DD of a
fuzzy decision system under B.

Definition 3: Let FDS = (U, A, V, f ) be a fuzzy decision
system, B ⊆ C, the DD of the fuzzy decision system under B
is defined as

DDB(S) =
∑K

k=1 dB(C, Ck)

|U/D| (11)

where DDB(S) is a sparsity measure of between-class objects
under B. The larger DDB(S) is, the more scattered the between-
class objects are.

Property 3: Let FDS = (U, A, V, f ) be a fuzzy decision
system, B1 ⊆ B2 ⊆ C, then DDB1(S) ≤ DDB2(S).

Proof: B1 ⊆ B2, hence,

dB2(C, Ck) = 2
√∑

ai∈B2
|c(ai)− ck(ai)|2 =

2
√∑

ai∈B1
|c(ai)− ck(ai)|2 +∑ai∈B2−B1

|c(ai)− ck(ai)|2 ≤
dB1(C, Ck). Thus, DDB1(S) ≤ DDB2(S).

Property 4: Let FDS = (U, A, V, f ) be a fuzzy decision
system, B ⊆ C, then 0 ≤ DDB(S) ≤ √|B|.

Proof: FDS is a fuzzy decision system, so 0 ≤ dB(C, Ck) ≤√|B|, 0 ≤ ∑K
k=1 dB(C, Ck) ≤ K

√|B|, thus 0 ≤ DDB(S) ≤√|B|.
Remark 1: ∀B ⊆ C, we have DDB(S) ≤ DDC(S).

According to Property 3, DDB(S) is monotonically increasing
with the size of B. Hence, when B = C, the DD of between-
class objects is largest. ∀B1, B2 ⊆ C, when |B1| = |B2|, if
DDB1(S) < DDB2(S), the distinguishing ability of B2 is greater
than that of B1 with between-class objects.

Definition 4: Let GDAB(S) and DDB(S) are the degrees of
aggregation and dispersion of FDS under B, the separability
of the fuzzy decision system under B is defined as

DSB(S) = GDAB(S) · DDB(S). (12)

When B = ∅, we set DSB(S) = 0. DSB(S) is a measure,
it describes the significance of the conditional attribute subset
relative to the decision based on the intraclass compactness
and between-class sparsity.

Property 5: Let FDS = (U, A, V, f ) be a fuzzy decision
system, DSB(S) is the separability of the FDS under B, then
0 ≤ DSB(S) ≤ √|B|.

Proof: It follows directly from Properties 2 and 4.
To understand the above calculation process, we take

B = {a1, a2} to calculate DA, DD, and the separa-
bility of Example 1. The intraclass centers are C1 =
(0.3367, 0.7167), C2 = (0.5750, 0.3717), and C3 =
(0.7983, 0.6133). The distance dB(xi, Dk) and the member-
ship uik of object xi with respect to Dk under B are shown
in Table III. The gray cells in the Table III are the member-
ship of intraclass objects. According to the values of the gray
cells, we have DAB(D1) = 0.6327, DAB(D2) = 0.5554, and
DAB(D3) = 0.6280, thus

GDAB(S) = 0.6327+ 0.5554+ 0.6280

3
= 0.6054.

The center of C1, C2, and C3 is C = (0.5700, 0.5672), thus,
dB(C, C1) = 0.2771, dB(C, C2) = 0.1956, and dB(C, C3) =

TABLE III
DISTANCE AND FUZZY MEMBERSHIP UNDER {a1, a2}

TABLE IV
AGGREGATION, DISPERSION, AND SEPARABILITY UNDER DIFFERENT

ATTRIBUTE SUBSETS

0.2329. According to (11), we compute

DDB(S) = 0.2771+ 0.1956+ 0.2329

3
= 0.2352.

Thus, we have

DSB(S) = 0.6054× 0.2352 = 0.1424.

According to the above calculation process, we can calculate
DA, DD, and the separability under different attribute subsets.
The calculation results are shown in Table IV. From Table IV,
we can see that the DA of intraclass objects under {a1, a2} is
larger than those of other attribute subsets. When |B| = 1, the
DD of between-class objects under {a1} is larger than those of
{a2} and {a3}. When |B| = 2, the DD of between-class objects
under {a1, a2} is larger than those of {a1, a3} and {a2, a3}. The
DD of between-class objects under {a1, a2, a3} is the largest.
The separability of FDS under {a1, a2} is the largest. Thus, the
best attribute subset is {a1, a2}, which is consistent with the
visualization result of Fig. 1. In the following, we will give
the definition of the optimal attribute subset.

Definition 5: Let FDS = (U, A, V, f ) be a fuzzy decision
system, B ⊆ C, a ∈ C − B, b ∈ B. a is a redundant attribute
for B, if DSB∪{a}(S) ≤ DSB(S). b is an indispensable attribute
in B, if DSB−{b}(S) < DSB(S). B is a reduction of condition
C with respect to decision D in FDS, iff B satisfies:
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(1) DSB∪{a}(S) ≤ DSB(S) ∀a ∈ C − B;
(2) DSB−{b}(S) < DSB(S) ∀b ∈ B.

From Definition 5, we know that B is a reduction, if all the
attributes in C − B are redundant and all the attributes in B
are indispensable, that is, B is an optimal attribute subset. It is
a NP-hard problem to find the reduction of FDS, so we will
design a heuristic algorithm to find a great informative and
separable attribute subset.

IV. ATTRIBUTE REDUCTION ALGORITHM BASED ON THE

SEPARABILITY

Based on the above analysis, the proposed separability can
be used to evaluate distinguishing ability of attribute sub-
sets. The larger the separability is, the more distinguishable
the attribute subset has. For a fuzzy decision system with N
attributes, it is time consuming and even infeasible to calculate
the separability of all candidate subsets (2N − 1). At present,
there are many common search strategies for attribute selection
such as branch and bound (B&B), genetic algorithms (GA)
and greedy selection (GS). The (B&B) algorithm has expo-
nential complexity. The GA is an evolutionary algorithm, so
it may have a certain degree of instability. The GS algorithm
can quickly find an approximate optimal solution. Therefore,
we choose the GS algorithm to search the optimal or sub-
optimal attribute subset. In view of the sequentially forward
selection (SFS) and sequentially backward elimination (SBE)
forms of the greedy algorithm, we design an attribute reduction
algorithm based on the SFS.

First, we define the significance of an attribute relative to
an attribute subset. Then we design a SFS attribute reduction
algorithm as Algorithm 1.

Definition 6: Let FDS = (U, A, V, f ) be a fuzzy decision
system, B ⊆ C, a ∈ C − B, the significance of a relative to B
is defined as

SIG(a, B, D) = DSB∪{a}(S)− DSB(S). (13)

SIG(a, B, D) is a measure, which denotes the significance
of attribute a with respect to B under decision D.

In Algorithm 1, red is initialized into an empty set and the
time complexity is O(1). In steps 3–5, this is a termination
condition for feature selection, and the complexity is O(1). In
steps 6–9, we compute the significance of attribute a relative to
red, and the complexity is O(|C− red||U||U/D|). In step 11,
attribute ak with the maximum value of SIG(ak, red, D) is
selected, and the complexity is O(1). In step 11, ak is
added into red and the complexity is O(1). The worst search
complexity is O(|C|2|U||U/D|) of Algorithm 1.

The termination parameter δ should be set in advance.
How to set δ is a very important issue for attribute reduc-
tion. Stopping the search too early may lead to insufficient
attributes used for learning; whereas stopping the search too
late may lead to redundant attributes used for learning and
overfitting may occur. People can set δ manually according
to the needs of learning tasks. This article provides a search
strategy of termination parameter δ based on the postpruning
idea from [8]–[10]. Next, we will give the detailed search pro-
cess. In the first step, the dataset is divided into two parts, one

Algorithm 1 SFSS
Input: A fuzzy decision system FDS.
Output: Attribute subset red.

1: Initialize: red ← ∅; // Initialization attribute subset is
empty.

2: while C − red �= ∅ do
3: if |red| > δ then
4: break; // Loop termination.
5: end if
6: for each ai ∈ C − red do
7: Compute the separability DSB∪{ai}(S);
8: Compute SIG(ai, red, D) according to Eq.(13);
9: end for

10: Find ak with maximum value of SIG(ak, red, D);
11: red← ak; // Put coordinated ak into red.
12: end while
13: return red;

is the training set, the other is the validation set. In the sec-
ond step, we select attributes by running the forward selection
algorithm and record the order of attributes that have been
selected for the training set, where the search range of δ is
set to [1, |C|] in low-dimensional data and that of δ is set to
[1, G] in high-dimensional data, [1, G] is a given search range
in advance. In the third step, we train classifiers on the training
set under the selected sequential attribute subsets one by one,
and record classification accuracies on the validation set. δ is
set to the number of attributes with the largest average classifi-
cation accuracies and the smallest number. Namely, in the kth
time, we evaluate the first kth attributes which are selected in
the second step with classification algorithms on the validation
set.

V. EXPERIMENTAL ANALYSIS

To verify the effectiveness and feasibility of the proposed
algorithm (SFSS), we compare it with HANDI [1], NMI [3],
RELIEF-F [11], and mRMR [45]. We compare them from
three aspects: 1) the classification accuracies under different
classifiers; 2) the number of the selected attributes; and 3) the
running time of attribute reduction. All algorithms are exe-
cuted in MATLAB 2015b and run in hardware environment
with Inter Core i7-7700K @ 4.20 GHz, with 16-GB RAM.

We employ four well-known classifiers to estimate clas-
sification accuracies of these attribute reduction algorithms
based on tenfold cross-validation. The four classifiers are
k-nearest neighbor (KNN), radial basis function support vec-
tor machine (RBF-SVM), three layers fully connected neural
network (FCNN), and random forest (RF). We set parame-
ter k = 3 of KNN. The control term C and Gaussian kernel
parameter σ of RBF-SVM are both one. Activation functions
for the hidden layer and the output layer of FCNN are set
to sigmoid and softmax functions, respectively. The number
of neurons in the output layer is equal to the number of cat-
egories, and the number of the neurons of the hidden layer
is equal to the mean of input and output layers. For RF, the
number of decision trees is 20 and the number of variables
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TABLE V
DATA DESCRIPTION

to select at random for each decision tree is the square root
of the number of all variables. The characteristics of these
four classifiers are that KNN does not have any parameters
that need to be trained; SVM has a small number of param-
eters that need to be trained; FCNN has a large number of
parameters that need to be trained; and RF has a small num-
ber of parameters that need to be trained and it integrates
many weak classifiers to make its classification ability become
stronger.

A. Experiment on UCI and ELVIRA Biomedical Datasets

The original data are normalized into the interval [0, 1] and
are randomly divided into ten subsets. One is used as valida-
tion set and the remaining nine are used for training. After ten
rounds, the median and fluctuation range of the classification
accuracies are considered as the final performance. Twelve
datasets from the UCI Machine-Learning Repository [7] and
ELVIRA Biomedical Dataset Repository [44] are shown in
Table V, where Lung-Cancer-1 is from the Dana-Farber
Cancer Institute and Lung-Cancer-2 is from the Brigham and
Women’s Hospital.

Different datasets have different termination parameters
for Algorithm 1. The termination parameters of all data are
determined by the postpruning search strategy proposed in
Section IV. The search ranges of δ on the first eight low-
dimensional datasets are set to [1, |C|], where |C| is the
number of conditional attributes. The search ranges of δ on the
last four high-dimensional datasets are set to [1, 50]. Single
accuracy and their average accuracy of four classifiers on Wine,
Wpbc and Lung-Cancer-1 are shown in Figs. 5–7. Due to the
space limitation, the search results for the remaining datasets
are shown in the first nine figures of supplementary materi-
als. The position of the red dot in each figure is the optimal
average classification accuracy, and the corresponding number
of attributes is the termination parameter. From these figures,
we know that with the increase of the number of attributes,
the average value of classification accuracies increases at the
beginning, when the size reaches a certain degree, the aver-
age value of classification accuracies begins to decrease or
stabilize.

Now, we analyze the trend of classification accuracy of
each classifier after the red dot in Figs. 5–7. In the Wine
dataset, the classification accuracies of KNN, FCNN, and

Fig. 5. Classification accuracies of Wine based on attribute ranking.

Fig. 6. Classification accuracies of Wpbc based on attribute ranking.

Fig. 7. Classification accuracies of Lung-Cancer-1 based on attribute ranking.

RF keep stable with the increase of attributes, while the
classification accuracy of SVM is decreasing. This means
that the attributes added after the red dot are redundant for
KNN, FCNN, and RF, and inconsistent for SVM. In the
Wpbc dataset, the classification accuracies of all classifiers
are decreasing with the increase of attributes, which means
that the redundant attributes are added after the red dot for
four classifiers. In the Lung-Cancer-1 dataset, the accuracies
of KNN, FCNN, and RF are fluctuating with the increase of
attributes, and the accuracy of SVM keeps stable. It shows
that the added attributes are unstable for KNN, FCNN, and
RF, and redundant for SVM. In this article, we choose the
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TABLE VI
CLASSIFICATION ACCURACIES OF REDUCED DATA AND RANKS OF REDUCTION ALGORITHMS WITH KNN

TABLE VII
CLASSIFICATION ACCURACIES OF REDUCED DATA AND RANKS OF REDUCTION ALGORITHMS WITH SVM

TABLE VIII
CLASSIFICATION ACCURACIES OF REDUCED DATA AND RANKS OF REDUCTION ALGORITHMS WITH FCNN

number of attributes with the best average classification accu-
racy as the termination parameter. For a specific classification
task, the number of attributes with the best classification accu-
racy under the selected classifier can be set to the termination
parameter. For the classifier with good generalization abil-
ity, we can add some attributes appropriately to improve the
robustness of the classifier. For the classifier with poor gen-
eralization ability, it is recommended to select the number
of attributes with the best classification performance on the
validation set.

The related parameters of HANDI and NMI are searched
by Wang et al. [1] and Hu et al. [3], respectively. The ter-
mination parameters of RELIEF-F and mRMR are searched
by the same method as SFSS. The termination parameters of

RELIEF-F, mRMR and SFSS are the same as the number of
attributes retained after attribute reduction. The detailed results
are shown in Table X.

The classification accuracy is an important index to evaluate
the performances of attribute reduction algorithms. Under the
four classifiers, the median and fluctuation range of classifica-
tion accuracies of the reduced datasets based on five algorithms
and the raw data are presented in Tables VI–IX, where the
values in brackets are the ranks of reduction algorithms.
The underlined symbols represent the highest classification
accuracies.

From Tables VI–IX, under the four classifiers, the aver-
age classification accuracies of HANDI, RELIEF-F, mRMR,
and SFSS are all better than those of the raw data. The
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TABLE IX
CLASSIFICATION ACCURACIES OF REDUCED DATA AND RANKS OF REDUCTION ALGORITHMS WITH RF

TABLE X
AVERAGE SIZE OF SELECTED ATTRIBUTE SUBSETS

performances of NMI on SVM, FCNN, and RF classifiers
are better than those of the raw data, and its performance
on KNN classifier is slightly worse than that of the raw data.
Moreover, SFSS performs better than the other four meth-
ods and raw data from the average classification accuracy and
the average fluctuation perspectives. The average classifica-
tion accuracies of SFSS under KNN, SVM, FCNN, and RF
are 3.257%, 12.369%, 8.445%, and 3.394% higher than those
of raw data, respectively. Out of the 48 cases, HANDI, NMI,
RELIEF-F, mRMR, and SFSS achieve the highest classifica-
tion accuracies in 8, 8, 11, 7, and 35, respectively. Obviously,
the performances of the first four reduction algorithms are
comparable. The performance of SFSS is obviously better than
the other four algorithms. From the results under the four clas-
sifiers, we can see that SFSS is very effective and robust for
attribute reduction of classification task.

Next, we use the Friedman test [48] to evaluate the sig-
nificant difference of the aforementioned five algorithms in
the performance of attribute reduction. We first examine
whether there are significant differences between the five algo-
rithms on these datasets. The Friedman statistic is defined
as χ2

F = (12N/[k(k + 1)])(
∑k

i=1 R2
i − ([k(k + 1)2]/4)) and

F = ([(N − 1)χ2
F]/[N(k − 1)− χ2

F]), where N is the num-
ber of datasets, k is the number of algorithms, and Ri is
the average rank of algorithm i in all the datasets. F fol-
lows a Fisher distribution with k − 1 and (k − 1)(N − 1)

degrees of freedom. The critical value of F distribution at the

significance level α can be obtained by calling the subprogram
icdf (′F′, 1−α, k−1, (k−1)(N−1)) in MATLAB 2015b. Hence,
we obtain the critical value F(4, 44) = 2.0772 when α = 0.1.
According to the ranks of the algorithms in Tables VI–IX, we
can obtain that F = 2.4061 for KNN, F = 6.6171 for SVM,
F = 6.6722 for FCNN, and F = 4.3453 for RF. All four val-
ues of F are greater than the critical value F(4, 44), so we
reject the null-hypothesis. Therefore, the five algorithms are
significantly different under the four classifiers.

Furthermore, we use a post-hoc test such as the Bonferroni–
Dunn test [47] to explore which algorithms are different
in statistical terms. The performance of two algorithms is
regarded as being significantly different if the distance of the
average ranks of the two algorithms exceeds the critical dis-
tance CDα = qα

√
([k(k + 1)]/6N), where qα is the critical

tabulated value for the test. From [47], when k = 5 and
α = 0.1, q0.1 = 2.241. So CD0.1 = 1.4466. From Table VI,
the distances of average ranks of SFSS to NMI and mRMR
are greater than 1.4466 for KNN. Thus, the performance of
SFSS is significantly better than those of NMI and mRMR at
α = 0.1. However, the Bonferroni–Dunn test is not power-
ful enough to detect any significant differences among SFSS,
HANDI, and RELIEF-F. According to Table VII, SFSS per-
forms significantly better than HANDI, NMI, and mRMR
for SVM. However, we do not have sufficient evidence to
show that there is a significant difference between SFSS and
RELIEF-F. From Table VIII, we can obtain that SFSS per-
forms significantly better than the other four algorithms for
FCNN. From Table IX, SFSS performs significantly better
than HANDI, RELIEF-F, and mRMR for RF. We do not have
sufficient evidence to show that there is a significant difference
between SFSS and NMI by Bonferroni–Dunn test. In sum-
mary, SFSS performs better than the other algorithms in most
cases. At the same time, we use the Nemenyi test graph [47]
to show the statistical difference between SFSS and the other
four algorithms. We connect the groups of algorithms that are
not significantly different (Fig. 8) at p = 0.1. We also show
the critical difference (CD = 1.5873) above the graph, where
k = 5 and α = 0.1, q0.1 = 2.459. From Fig. 8, we can con-
clude that the Nemenyi test is not powerful enough to detect
any significant differences among HANDI, NMI, RELIEF-F,
and mRMR. The performance of SFSS is significantly better
than that of HANDI and RELIEF-F under classifiers FCNN
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TABLE XI
RUNNING TIME OF REDUCTION WITH DIFFERENT ALGORITHMS (S)

Fig. 8. Comparison of all reduction algorithms against each other with the Nemenyi test. Groups of algorithms that are not significantly different (at p = 0.1)
are connected. Comparison of all reduction algorithms under (a) KNN, (b) SVM, (c) FCNN, and (d) RF.

and RF. The performance of SFSS is significantly better than
that of NMI under classifiers KNN, SVM, and FCNN. The
performance of SFSS is significantly better than that of mRMR
under classifiers SVM, FCNN, and RF.

The size of the attribute subset, which is selected by the
attribute reduction algorithms, is another important evaluation
index for attribute reduction. We aim to find attribute subsets
with high classification accuracy and as few attributes as pos-
sible. The average size of the selected attribute subsets with
tenfold cross-validation is shown in Table X. From Table X,
the average size of the selected attribute subsets by SFSS (8.5)
is minimal compared with those of the other methods. In the
case of ensuring classification accuracy, SFSS greatly reduces
the dimension of the raw data.

In attribute reduction, the running time is still an impor-
tant index to measure the feasibility and effectiveness of an
algorithm. The median and fluctuation of running time based
on tenfold cross-validation of five algorithms are shown in
Table XI. From Table XI, we can find that the performance
of SFSS is significantly better than those of HANDI and
NMI. The performance of SFSS is slightly better than that
of RELIEF-F. The performance of SFSS is comparable to that
of mRMR. From the computing speed view, the performance
of SFSS is efficient and robust.

In order to visualize the raw data and the reduced data
selected by reduction algorithms, we use t-SNE [12] to visu-
alize the raw data and reduced data in a 2-D map. Due to
the space limitation, the results of the first eight datasets are
shown in Figs. 9 and 10, and the results of the last four datasets
are shown in the last figure of supplementary materials. From
these figures, we can see that the separability of SFSS outper-
forms those of the other algorithms in the most cases. In the
2-D map, when the class overlap of the raw data (Wine, Seeds,
Wdbc, Segmentation, Spambase, DLBCL-Stanford, DLBCL-
Harvard, and Lung-Cancer-1) is less, SFSS can well separate
different categories. In this case, the intraclass aggregation and
the between-class dispersion for reduced data by using SFSS
are larger than those of others. When the class overlap of
the raw data (Wpbc, Winequality-red, Winequality-white, and
Lung-Cancer-2) is relatively large, the intraclass aggregation
and the between-class dispersion for reduced data by using
SFSS have some improvements over the others.

B. Experiment on MNIST Database of Handwritten Digits

The MNIST1 database is a well-known database for hand-
written digit recognition. It has a training set of 60 000 images

1http://yann.lecun.com/exdb/mnist/
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Fig. 9. t-SNE visualization of different algorithms in the first four datasets. (a) RAW. (b) HANDI. (c) NMI. (d) RELIEF-F. (e) mRMR. (f) SFSS.

Fig. 10. t-SNE visualization of different algorithms in the middle four datasets. (a) RAW. (b) HANDI. (c) NMI. (d) RELIEF-F. (e) mRMR. (f) SFSS.

Fig. 11. Results of reduction algorithms in the MNIST dataset.

and a test set of 10 000 images, and each image has 28× 28
pixels. The MNIST has ten categories, namely, digits 0–9.
In order to observe the distributions of the selected attributes
on images, we use reduction algorithms to retain half pixels

and remove half pixels for each image. For a given neigh-
borhood radius, when the number of attributes increases to a
certain extent, the size of the neighborhood granule will not
change any more. Therefore, HANDI and NMI are not suitable
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TABLE XII
ACCURACIES OF VALIDATION SET AND TEST SET IN THE MNIST

DATASET

to retain large-scale attributes for attribute reduction. So we
reduce the attributes of MNIST by RELIEF-F, mRMR, and
SFSS. We use 10×5 cross-validation to select attributes on the
training set of 60 000 images. The test set of 10 000 images is
used as independent test data. In order to observe the removed
pixels and retained pixels simultaneously, we select one image
from each category to show the reduction results. The details
are shown in Fig. 11, where red pixels are the removed pix-
els by attribute selection algorithms. MNIST handwritten digit
images are manually collected, where the useful information
is mainly concentrated in the middle of each image, and the
edges are mostly filled information. In Fig. 11, from the dis-
tribution of red pixels in the edge of each image, we can see
that all three algorithms delete many filled pixels. Moreover,
SFSS performs better than RELIEF-F and mRMR. By observ-
ing the distribution of red pixels in the middle of each image,
we can find that RELIEF-F and mRMR both delete some valu-
able pixels that are useful for digit recognition (such as digits
0, 2, 4, 5, 8). However, for SFSS, the pixels with distinguishing
ability for digit recognition are preserved more completely. In
terms of the continuity of the preserved regions, RELIEF-F
and mRMR have poor continuity, while SFSS has good conti-
nuity. Therefore, the relevance of the selected pixels by SFSS
is high for digit recognition. Table XII presents the average
and best classification performances of the selected attributes
by RELIEF-F, mRMR, and SFSS on validation data and inde-
pendent test data of MNIST. The underlined symbols represent
the highest classification accuracies. As can be seen from
Table XII, the three algorithms are effective for MNIST, and
the mean of all classification accuracies is 96.0496% and the
variance is 0.0398%. The performances of the three algorithms
are comparable. In most cases, the performance of SFSS is
slightly better than those of the other two algorithms.

VI. CONCLUSION

Removing redundant attributes is an important step
before performing classification and regression learning. It
can decrease the cost of learning and improve learning
performance. In this article, we have proposed an attribute
reduction algorithm based on the aggregation of intraclass
objects and the dispersion of between-class objects for fuzzy
decision systems. The aggregation of intraclass objects and the

dispersion of between-class objects were considered simul-
taneously to measure the significance of attribute subsets in
fuzzy decision systems. Then, a postpruning strategy was
introduced to search the termination parameter and prevent
overfitting. Twelve public datasets from UCI and ELVIRA
Biomedical repositories and MNIST handwritten digits were
used to compare the performance of SFSS with those of
classical algorithms. Experimental analysis and statistical test
showed that SFSS can fast find a small and effective attribute
subset and obtain high classification performance.

This article mainly studies the decision systems with
real-valued attributes. In the future, we will study the
attribute selection model of heterogeneous decision systems,
which have category, real-valued, and interval-valued attributes
simultaneously.
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